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Abstract 

In the framework of numerical modelling in transient heat conduction, it is shown in this paper, how to introduce 
different kinds of coupling on a part of the domain boundary without changing the original matrices of the model. The 
technique uses specific fluxes applied to the boundary which is treated: at each time step the coupling variables- 
temperatures and fluxes-are computed at first, and then, the influence of the fluxes are distributed on the rest of the 
domain and no iteration procedure is used. This permits the treatment of unexpected problems such as : variations of 
heat transfer coefficients, model connection and radiative boundary conditions. The method is particularly well adapted 
to a reduced model which acts as a substitute for a detailed model with diminution of computation time. Although the 
reduced model is obtained with some kind of boundary conditions and usually functions within the latter, with these 
coupling fluxes, the reduced model can also be used in other conditions. 0 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
A 
b 
C 
C, 
F 
G 
Gil 
GC 
H 
h 
K 
N 
w 
n 

n, 
P 
R 
S 
SO 

calculus matrix (dim. N * N) 
calculus vector (c1im.N) 
matrix of conductances (dim.n, * nJ on I-, 
matrix of heat capacities (dim.N * N) 

diagonal matrix of n eigenvalues 
input matrix (dim.n *(p- 1)) 
input matrix (dim.n *p) 
input matrix (dim.n * n,) 
output matrix (dim.N’ * n) 

heat transfer coefficient 
matrix of heat conductances (dim.N * N) 
order of DM 
number of outputs 

order of RM 
number of nodes on r, 

number of inputs 
matrix of radiative conductances (dim.n, * nr,) on r, 
static matrix (dim.N *(p- 1)) 
static matrix (dim.N * p) 

_ 
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S, static matrix (dim.N’ * n,) 
T, p temperature vector and its derivative (dim.N) 
U, ti input vector and its derivative (dim.p- 1) 
U, 6’ input vector and its derivative (dim.p) 
x, .? reduced state vector and its derivative (dim.n) 
y output vector (dim.N’). 

Greek symbols 
boundary 
part of the boundary r to be treated 
time step 

emissivity 
temperature 
temperature vector 
time constant 
flux density 
vector of thermal stimulations (dim.N) 
vector of thermal stimulations (dim.N) 
vector of thermal stimulations (dim.N) 

Subscripts 
1, 2 relative to both subsystems 
c relative to the coupling 
T transposition 
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+ instant of computation on coupling fluxes, even if the reduced model has a modal 
- previous instant of computation. formulation. 

Abbreviations 
BC boundary condition 
DM detailed model 
RM reduced model. 

1. Introduction 

The basic problem is the following: let a diffusive 
domain 0 be with a boundary on which the boundary 
conditions (BC) are split into four parts (Fig. 1) : BC of 
the first kind (Dirichlet) on I-,, BC of the second kind 
(Neumann) on r2, BC of third kind (Fourier or Robin) 
on rX. On the last part r, is applied a BC of the second 
or third kind. On this part of the boundary, another type 
of BC corresponding to a coupling condition will be used 
afterwards. 

The modelling of thermal processes governed by par- 
tial derivative equation generally needs a spatial dis- 
cretization. Whatever the numerical method used (finite 
elements, control volumes, etc.) the resulting model can 
be written as a system of N differential equations in time. 
For a heat conduction problem (domain 0 and boundary 
I-), a general formulation is : 

C,7;(t) = KT(t)+Y(t) (1) 
where t is the time, T (dim.N) is the vector of the N 
temperatures at the nodes of the discretization and F is 
its derivative with respect to time. For a linear problem, 
the matrices C, (heat capacities) and K (thermal con- 
ductances) are constant. Y(t) is the vector associated to 
heat generation and boundary conditions. 

Considering these hypothesis, eventually taking into 
account some heat generation into the domain, any mod- 
elling using a spatial discretization leads to the com- 
putation of a temperature vector at each time step. In this 
paper, the following cases will be considered successively : 

??the temperature vector is computed with a classical 
detailed model (DM) ; 

??all or part of this vector is computed with a reduced 
model (RM). 

Now, we suppose that DM or RM is created. The aim is 
to keep such a model when applying new conditions on 
r, : 
??contact conditions (coupling with a fluid or a heat con- 

The model represented by equation (1) can be very 
large according to N. In order to reduce the simulation 
time, model reduction techniques coming from automatic 
works can be used [l-3]. In heat transfer problems, some 
of these methods have been used and improved [4-61 and 
new ones have been established [7-91. In our approach, 
from a heat conduction problem such as equation (l), we 
have already shown how to obtain a reduced rep- 
resentation by an identification technique [8-141. The 
obtained Reduced Model (RM) is expressed within a 
modal representation : the corresponding system of 
differential equations of order n (n << N) is moreover 
uncoupled. The n identified eigenvalues correspond to 
dominant modes, which are sufficient to describe the 
dynamic behaviour of the problem in a satisfactory 
manner. For example, it has been shown, in a 3-D case 
describing heat transfers within an electronic component, 
how the final simulation time has been reduced by a 
factor of 8000 [13, 141. 

duction model) ; 
??radiative boundary conditions. 

So, the procedure will permit the economy of not having 
to recreate a model corresponding to the new conditions 
on r,. Let us emphasize that r, must be relatively small 
compared to the whole boundary r. The coupling fluxes 
that will be applied on each node of r, will give back a 
BC which was not included in the previous modelling. 
For this new interface, these fluxes will also be called 
correcting fluxes. In this paper, we explain how to build 
these correcting fluxes, at first on a classical detailed 
numerical model, and then, on the reduced model we 
have developed. Some examples with new BC (coupling 

This kind of reduced model is, of course, particularly 
well adapted to real time applications or when a lot of 
simulations are needed. In this paper we want to show 
how to extend the field of the applications of such mod- 
elling to the coupling with other models, and more gen- 
erally how to change boundary conditions on such 
models. A modal approach has already been used for the 
coupling problem [15] : the authors, after having reduced 
each subsystem with a modal formulation, calculate some 
coupling eigenmodes describing the connection of the 
subsystem. With regard to our work, the method is based 

Fig. 1. The diffusive problem to treat, particularization of the 
boundary r,. 
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of 2 RM, radiative BC) will be used to illustrate the 
method. 

2. Modelling in order to couple 

Note that the coupling method with the fluxes will be 
applied mainly when RMs are considered (i.e. coupling 
of 2 RMs or 1 RM and 1 DM). Nevertheless, as the 
equations have to be presented in a slightly different way, 
at first, we explain here the principle with a classic DM 
formulation (couplling of 2 DM’s). Afterwards, the 
method is applied to RMs. 

2.1. Correctingjuxes on a detailed model (DM) 

Here is shown how a representation of a DM given by 
equation (1) and radiative to BC of the second kind on 
r,, has to be modified in order to point out the interface 
variables of r, : the latter will be treated specifically when 
the new interface condition will be applied. To par- 
ticularize r,, the flux vector Y is divided in two parts : 

Y = @+a), (2) 
CJ represents all the thermal stimulations applied to the 
system except on r,, @‘, is the contribution of Y which is 
applied only on I-,. Equation (1) is thus written : 

C,F(t) = KT(t)+@(t)+@Jt). (3) 
A time discretization is then necessary. Let (+) be the 
superscript of the instant of calculation and (-) the 
previous one. With an implicit Euler scheme, equation 
(3) becomes : 

T+-Tm 
~ = C;‘[KT+ +a)+ +aq] 

At 

which leads to : 

(4) 

AT+ = b+b: 

with : 
(5) 

and b+ = C.-l@+ c *c (6) 

where I is the identity matrix of order N. Vector b,t 
includes all the fluxes @,’ applied on r,. Vector b includes 
all other thermal stimulations @+ as well as the tem- 
perature vector at the previous instant T-. An other 
example of matrix A and vector b is given in Appendix 1 
in the case of a centred scheme. 

Remarks : 

??to simplify the fcsrmulation, it will then be supposed 
that the n, nodes on Tc have their temperatures listed 
at the beginning of vector T+ ; 

??hereafter it will be also supposed that matrix A can be 
inverted numerica.lly : in fact, if the system is to large 

that can be an disadvantage. For the presentation, we 
need this inversion to separate the nodes on the bound- 
ary Tc. Later, for RM we will see that it is easier. 

By taking into account this last remark, the solution of 
equation (5) is written as : 

T+ = A-‘b+A-‘C,‘@;. (7) 
The vector @‘c (dim.N) is such as : @: = [@H 0. . 0] where 
@‘Cc (dim.n,) is the real coupling vector. The term A-‘b 
contains all the past of the system as well as the con- 
tribution of the other solicitations (a+). The term A-’ 
CL’@,+ corresponds to the contribution of what is 
applied on the boundary I-, at the instant (+). It is 
precisely here that a BC other than a second kind one 
can be introduced through vector a,,. 

Let us write the n, first lines of equation (7) in the 
following manner : 

T,’ =(A-‘@,+(A-‘C,‘),@: (8) 
the subscript c indicates that the vectors and the matrices 
are limited to the n, first lines. 

For example, if an implicit scheme is used, it can be 
taken for Q’,, : 

??a contact BC : @z = C(O: - T,+) (9) 

??a radiative BC : @L = R(0,f4 - Tz4). (10) 
In these expressions, 0 is a temperature vector coming 
from another model, of which the n, first components are 
facing the n, first components of T (see Fig. 2 for a contact 
condition), C (dim.n, * n,) is a matrix expressing the new 
thermal conductances between the different nodes on 
both sides of Tc (linear transfer: contact with another 
solid or convection with a fluid). In the same way, R 
(dim.n, * n,) is a matrix expressing the radiative transfer 
with another system. Of course, a BC where both kinds 
of heat transfer appear is possible by combining equa- 
tions (9) and (10). 

If vector @A is eliminated from equation (8) with (9) 
or (lo), equation (8) constitutes then a system of n, equa- 
tions in two n, unknowns (the node temperatures of both 

l-c 

Model 
for T 

Model 
for 0 

nc nodes nc nodes 

Thermal resistances 

Fig. 2. Coupling conditions on r, relatively to both models. 
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sides of I,). To solve the problem, it is now necessary to 
add some information on the vector 0. If we make the 
assumption that the 0 model is governed by similar equa- 
tions as equations (7))(10), the elimination of the coup- 
ling fluxes gives also another system of n, equations in 
2n, unknowns : the association of these two systems then 
enables, at each time step, the calculation of the 2n, values 
of temperature at the interface : T,’ and 0:. The method 
of resolution will be linear in the case of equation (9), 
and non linear in the case of equation (10). 

Afterwards, the coupling flux vector is 0: calculated 
with (9) or (10). The rest of the temperature vector Tt is 
calculated with (7). The same calculations are made in a 
similar way on the other side of I, with 0. Note that the 
full matrix A-‘Cl’ distributes the effect of (D: on the 
temperatures of the nodes that are not located on I,. 

Remarks : 

??in many cases-with a given fluid temperature o(t) for 
example-where the coupling is made with only one 
node, the local resolution of the system is of order n, 
instead of 2n, ; 

??the proposed method enables the coupling two models. 
Note that there is no iteration between both models, 
the interface variables (temperatures and fluxes) being 
calculated in an explicit way at each time step ; 

??it is also possible to introduce a time-dependent heat 
transfer coefficient that will appear in matrix C ; 

??it is always possible to approach a BC of first kind, 
or a perfect contact between two models, by setting 
numerically very important values for the terms of 
matrix C ; 

??in the case of radiative BC, it is more interesting to 
solve a non-linear system of lower order on I, than on 
the whole domain R. The calculation is faster and the 
convergence easier ; 

??remember that the method is worthwhile only if the 
number of nodes n, of r, is small compared to the total 
number of nodes N; 

??the development which is presented here, needs the 
assumption that it is possible to invert two matrices (A 
for vector T and an equivalent matrix for 0). These 
matrices can be large. Hereto, it will be seen how the 
method is particularly well adapted for reduced models, 
where the equivalent of A-’ is given in an explicit form. 

2.2. Correctingjluxes on a reduced model (RM) 

2.2.1. The reduced model used 
The model reduction techniques have been used firstly 

in automatic sciences [l-3] and then used and developed 
in heat transfer modelling [4-91. In our case, in previous 
works [S-14], we have already shown how to obtain, from 
a reference DM of order N, a RM of order IZ (n << N). The 
RM is expressed with a state space representation [17- 
18] using eigenmodes that have been identified. This 

identification is executed by using numerical simulations 
performed with DM. 

Let us recall the main different steps : 

w choice of N’ nodes of the system (all the nodes can be 
taken, then N’ = N) ; 

??on each thermal input of the system, a unitary step is 
applied with DM and the N’ time-dependent tem- 
peratures are stored ; 

??minimization of a quadratic criterion between these 
outputs and the ones coming from RM. The latter are 
expressed analytically and depend on the order 12 of 
RM and its parameters (the eigenmodes and the cor- 
responding matrices) ; 

??the resolution of this optimization problem leads to a 
state representation in the identified eigen basis : 

k(t) = Fx(t) + G, ri(t) (11) 

y(t) = Hx(t)+S,U(t) (12) 

where x(t) is the reduced state vector whose dimension is 
very small compared to the reference DM (n << N), fl is 
its derivative with respect to time, F is the diagonal matrix 
containing the dominant eigenmodes of the system, U(t) 
(dim.p) is the input vector, o(t) its derivative and v(t) 
(dim.N’) is the estimation of the temperature vector made 
on the N’ nodes selected in vector T. The appropriate 
dimensioned matrices G, and H, are called, respectively, 
the input and output matrices. So is the static matrix that 
points out the instantaneous asymptotic response &U(t). 
This output would be the one if the system had no heat 
capacity. 

Remark : 

A modal representation such equations (1 1)-( 12), includ- 
ing the derivative with respect to time of the thermal 
solicitations and the static matrix is not often used in 
heat transfer modelling. In order to familiarize the reader 
with this, such a modelling is developed in the Appendix, 
in the case of DM-from equation (1). 

Note that the reduction procedure leads to solve a differ- 
ential equation system (11) of order IZ << N, that is more- 
over uncoupled (matrix F is diagonal). Note, also that 
the identified eigenvalues in F represent the dynamics : in 
heat diffusion, all these values (FJ are real and negative, 
and correspond to inverses of time constants (2,) : 

F, = - l/Zi. (13) 

The identification principle is recalled in Fig. 3. 

2.2.2. The reduced model (RM) with the correcting 
fluxes 

Let us suppose that RM given by equations (1 1)-( 12) 
describes the temperature evolution of such a system 
represented in Fig. 1. In order to change BC on I,, in a 
similar manner as what has been presented in Section 2.1, 
the thermal inputs included in vector U(t) are divided in 
order to emphasize the contribution of B,(t) as follows : 
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Detailed Model Simulated Outputs 

! - conjugate gradient 

Fig. 3. Identification principle of the reduced model. 

n(t) = Fx(t)+Gti(r)+G,&(t) (14) 

y(t) = Hx(t)+Su(l)+S,@~(t). (15) 
The new input vectsor u(t) and its derivative a(t) take into 
account all the thermal stimulations that do not act on 
I,. They are, respectively, applied through the matrices 
S and G. The vector m,(t) (dim.n,) and its derivative @Jt) 
are applied on I,, i hrough the matrices G, and S,. 

2.2.2.1. Setting-up the static matrix SC. By using the ref- 
erence DM in a steady state, a unit flux is applied suc- 
cessively on each of the n, nodes, the other components 
of u(t) are all null. Each of the n, output vectors of DM 
then correspond to a column of the sought matrix. Note 
that this way of acting provides an exact static matrix: 
in fact S, is the same in DM and RM. 

2.2.2.2. Setting-up the input matrix G,. As it has been 
shown for the identification of the original RM, it is 
always possible to calculate G, by studying the dynamic 
responses of the system when a step flux is made inde- 
pendently on each of the n, nodes of I, (as in Section 
2.2.1). Such an approach becomes tedious if n, is large. 
In practice, the dynamic response is studied when all the 
n, nodes are stimulated simultaneously with only one step 
flux. At t = 0, the flux vector a’, = 1 is applied. 1 is a 
vector (dim.@ including only ones. If the initial con- 
dition and the other inputs are null, the analytical solu- 
tion of equations (14) and (15) is : 

y(t) = [Hexp(Ft)G,+S,]l. (16) _ 

If the initial condition y(O) = 0 is applied, it ensues : 
HG,+S, = 0. (17) 
This relation represents a system of N’ * n, equations (the 
term number of the matrix S, previously determined) in 
II * n, unknowns (the term number of the matrix G,). 
With the assumpuon that N’ > n, which is always the 

case in practice, it becomes an optimization problem and 
the matrix G, can be calculated through the least squares 
method by : 

G, = - (H’H)-‘HTS,. 

Remarks : 

(18) 

??G, (dim.n * n,) permits to distribute the influence of the 
variations of the correcting fluxes on the state vector 
x(t) through the dynamics included in F; 

??G, depends on S,, which is exact and which expresses, 
in the steady case, the spatial distribution of BC ; 

??G, depends on H which has been identified with F in 
the dynamics procedure [S-14], recalled in Section 
2.2.1. The same step flux has been used to stimulate all 
the nodes of TC: they are then treated dynamically in 
the same way through matrices F and H. This single 
input has to be anticipated in the input vector U(t) 
(dim.p) of the original RM [equations (11) and (12)] ; 

??consequently, the vector u(t) that includes all the other 
thermal informations is of dimension p- 1. The 
matrices G and S are then, to within one column, the 
matrices G, and S, ; 

??equation (17), that leads to equation (18), signifies that 
the instant t = 0 is particularized for the optimization 
problem: it is the moment when the step is applied. 
Other results have been obtained by minimizing criteria 
built on a integral from &cc [8]. These results are less 
accurate ; 

??this reduction method enables us to obtain a RM on 
N’ selected nodes set in y(t) from the N components of 
the original vector T(t) of DM. In order to couple, it is 
of course necessary to have at least the n, nodes of I, 
in y(t). 

Let us make a time discretization of equations (14) and 
(15). Using the analytical solution [17, 181 of equation 
(14) between the steps (+) and (-), it ensues : 
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x+ = exp(FAil)[x- +G(u+ -u-)+G,(@z -QL:)] (19) 

.Y + = Hx+ +SU+ -t&Q,:. (20) 
This can be written as : 

Y + =y,+B@,,f 

with : 
(21) 

y. = Hexp(FAt)[x- +G(u+ -u-)-G,@,)]+Su+ 

(22) 
B = H exp(FAt)G, + S, (23) 
L.+ is the solution at the time step (+), y, includes the 
past of the system at (-) as well as the contribution of 
the solicitation at (+) that are not applied on I-,, B is a 
matrix (dim.N’ * n,) that distributes over the whole vector 
y(t), the effects of the applied fluxes included in @z. 

In the same manner as in Section 2.1, it will then be 
assumed hereto, that the n, nodes on the boundary r, 
have their temperature listed at the beginning of vector 
JJ+. The relations allowing the change of BC are given 
with equivalent equations of (9) and (10) : 

??a contact BC : a,‘, = C(O,+ -v:) (24) 

??a radiative BC: (Dz = R(0z4 -y:“). (25) 
The subscript c and the matrices C and R have the same 
meanings as the ones introduced for equations (9) and 
(10). As for equation (S), the n, first lines of (21) can be 
written as : 

‘C + =yofc+B,@,,::. (26) 
With the assumption that the model representing 0 is 
given in the same way as equation (26) for a RM or as 
equation (8) for a DM, the elimination of vector 02 
provides a system of 2n, equations in 2~2, unknowns (the 
temperatures on r,). At each time step, the interface 
temperatures are calculated, then the flux vector QL 
whose influence is distributed on the rest of the com- 
ponents ofy+ through equation (21). 

Remarks : 
??the proposed method is much easier in the case of RM 

than DM because it is not needed to invert the system 
matrix [see equation (7)] : in fact the relation (21) giving 
_LJ+ is explicit ; 

??of course, all the other remarks made for DM in Section 
2.1 are valid, except for the final one ; 

??as it will be seen in the applications, the proposed 
method can integrate very rough changes of boundary 
conditions through the matrices C or R of equations 
(24) and (25). 

3. Application to different cases 

3.1. The coupling of two reduced models 

3.1.1. The system under investigation 
The 2-D conductive problem which is presented in Fig. 

4 is composed with a concrete part (20 x 20 cm) and 

B 
he %2(t) c 

1 I 

A 

h *z&t) D 

Fig. 4. The whole system to study. 

with an insulating one (20 x 8 cm). The supposed contact 
between both parts is nearly perfect with a thermal resist- 
ance of lo-’ K m W -’ for each element. On each of the 
faces AB, CD, BC, AD, are applied conditions of the 
third kind : O,,(t), e,,(t), O,,(t) and Q,,(t) with the heat 
transfer coefficients (in W mm2 K-‘): h,, = 10, 
h,, = 100, hBC = 50, h,, = 30. The reference detailed 
model DM has been obtained from a classical control 
volume method : the spatial discretization includes 
21 * 21 = 441 nodes in the concrete, and 9 * 21 = 189 
nodes in the insulating, therefore a total of 630 nodes. 

3.1.2. The reduced models 
Each of both subsystems is modelled separately with a 

DM (order 441 for the concrete and 189 for the insu- 
lating). For this study, a boundary condition of the third 
kind has been used on Tc where the contact will be made. 
The heat transfer coefficients are different (in W m-* 
K- ‘) : h, = 100 and h2 = 80, in relation to the tem- 
perature Q,(t) (see Fig. 5). Therefore, each subsystem 
has four inputs. The identification procedure in order to 
obtain RM is then applied to each of both DMs. With 
the subscripts 1 for the concrete, and 2 for the insulating, 
according to equations (14) and (15), the reduced models 
are ,: 

B C 

A D 
21 nodes 

Fig. 5. The two uncoupled subsystems. The other BCs are the 
same as in Fig. 4. 
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k, =F,x,+G,ti,i-G,,Q,, 

22 = F2x2 +G2ti2 i-Gc20c2 
y, = H,x, +S,u, i-S,1@c, 

~2 = H2x2 +fh +Sc2@c2 

Remarks : 

Concrete (RM , ) 

Insulating (RM,). (27) 

??RMl has in ui(t) the three stimulations : O,,(t), Q,,(t) 
and BAD(t), and similarly RM2 has in z+(t) the stimu- 
lations &n(t), &c(t) and 0,,(t). The vectors u,(t) and 
am thus, regroup the real inputs of the whole; 

??the vectors @‘,, <and Dc2, of dimension 12, = 21, cor- 
responding to the nodes on each side of I,, are ‘fic- 
titious’ flux inpms on RMl and RM2. They take into 
account the new coupling condition. They are cal- 
culated in a slightly different way than in equation (24) 
in order to take into account the initial BC of the third 
kind in each of the DM. For example, for RMl : 

WI, = C(Y:, -Y:,) ++h,A. (28) 

An equivalent relation is written for RM2. 

??both RMs have been established for the whole tem- 
perature vector in both cases: the output vectors y, 
and yZ are then vectors of dimension 441 and 189, 
respectively, corresponding to the two spatial dis- 
cretizations. 

For each RM, the identification method led us to build 
models of order five relatively to each input. Each matrix 
F, and F, then includes 5 * 4 = 20 identified eigenvalues. 
To illustrate this point, the five eigenmodes relative to 
the input e,(t) are presented in Table 1, in the form of 
time constants [cf. equation (3)], for each RM. 

Let us point out that each RM has its own dynamics : 
for example, the longest identified time constant is 1 h 3 1 
min 50 s for the concrete and 1 h 2 min 1 s for the 
insulating. If we consider the whole system (concrete 
coupled with insulating) and if we extract the longest 
time constant from the corresponding DM of order 630, 
this latter is about 2 h 15 min. The coupling procedure 
of both RMs must then reproduce a quite different 
dynamics than the RM ones. 

3.1.3. Simulations and comparisons 
In order to test the reliability of the coupling, the 

system has been stimulated with very different inputs 

Table 1 
The identified eigenvalues relative to input 8, 

lh31min50s 
20 min 6 s 
13min32s 
4 mln 55 s 
42 s 

1 h 2 min 1 s 
20 min 59 s 
Smin 19s 
31 s 
22 s 

0,,(t), t&,,(t), &n(t) and t&,(t) allowing the creation of 
some inversions for the thermal gradient. In the time 
value range [0- 100 000 s], the temperature variations (in 
“C) are given by (with t in s) : 
8,, = 7°C for0 < t < 15OOOs, 

eAB = 25°C fort > 15000s 

&,,=25”C att=O, &c=llC fort>0 

t&n = -9 * 10m41+ 18 for0 < t < 2000 s 

&, = 3.125 10m4t-6.25 fort > 2000 s 

BAD = 1.4* lo-4t+ll vt. 
As these simulation durations are relatively long, a time 
step of 1000 s (16 min 40 s) has been chosen. Considering 
the identified time constants (see Table l), the shortest 
ones cannot be represented with this time step. The used 
RMs are then of order three (instead of five) for each 
input. 

Afterwards, the simulation results of the coupled RM 
is compared to the ones of DM of order 630. Among 
the 630 thermograms, nine comparisons of DM and the 
coupling RM l-RM2 are shown in Fig. 6 : three ther- 
mograms (a,b,c) set inside the concrete, three ther- 
mograms (d, e,f) set inside the insulating, and three ther- 
mograms @, h, i), at the interface on the concrete side. 
Comments : 
??as it can be seen, overall, the results are very satisfying. 

The coupling RM l-RM2 curves are always very close 
to the DM curves, even inside the concrete or the insu- 
lating or for the more sensitive nodes (d,e,f) at the 
interface ; 

??the computation times were 81 s for DM and less than 
one second for the coupling RMl-RM2, meaning a 
time gain in the order of 80: for DM a differential 
equation system of order 630 is treated, instead of two 
uncoupled systems of order 12 (4 * 3) for RMl-RM2. 
Note that, in this application, the whole temperature 
vector is computed, this gain would be much better if 
the output vectors were smaller ; 

??the computation time to obtain RMs is made of two 
parts : the first part consists in the simulations of sep- 
arated step inputs made with DM to obtain the ther- 
mograms to store (here about 320 s), and the second 
part is coming from the procedure of minimization is 
about 260 s. This time computation seems to be quite 
long (580 s) but they are made only one time. The 
obtained RMs can be used then for any solications and 
coupling ; 

??the computation for DM have been made with a direct 
method with preconditioning. An iterative method 
would never have been faster. 

3.2. Coupling of a reduced model with radiative boundary 
conditions 

After this study of linear conductive coupling between 
two reduced models, the subject under consideration 
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Fig. 6. Comparison between DM (order 630) and the coupling 
RMl (order 12)-RM2 (order 12) for different nodes in the 
system. 

here, is the use of such a RM (which has been identified 
with linear boundary conditions), with boundary radi- 
ative conditions by using this correcting flux method. 

3.2.1. The studied system and the reference model 
The example is a simple 2-D problem: a one metre 

square slab ABCD of which the heat capacity and the 
thermal conductivity are equal to one. The side AB is 
submitted to a flux density q(t). On the sides BC and 
CD, homogeneous boundary conditions of the second 
kind are imposed. On the side DA, corresponding to 
the boundary to be treated, two different cases will be 
considered (Fig. 7) : 

??case a : convective transfer (hAD = 5 W rn-’ K -‘) with 
the ambient environment being at O(t) ; 

??case b : same conditions as case a, upon which a radi- 
ative transfer is superimposed (emissivity E = 1). 

The reference DM for both cases has been obtained with 
the boundary element method [19, 201 which only 
requires a boundary mesh : 25 straight elements per side 
have been used (temperature and heat flux density are 
constant over each element). Thus the order of DM is 
100. 

3.2.2. The identified reduced model and its correction 
withjuxes 

The method previously described enables to build a 
RM for case a, with the form of equations (9) and (10). 
For this study, the input vector U(t) has then p = 2 com- 
ponents : q(t) and Q(t). The output vector y(t) has been 
limited here to the N’ = 25 elements of the side AD. Five 
eigenvalues have been identified for input cp, and six for 
input 0 : the RM is then a model of order 11. The eig- 
envalues, under time constant form, are presented in 
Table 2. For comparison, the six first analytical time 
constants are also listed in this table. 

Remarks : 

??it can be noted that the longest time constant is ident- 
ified on each input. The second and third also appear 
for the input 0 ; 

??the other identified time constants correspond to an 
amalgamation of the rest of the spectrum ; 

??note also the dynamic uncoupling of each input which 
acts with its own eigenmodes according to the observed 
outputs. 

The RM which has been created here, describes the sys- 
tem behaviour with heat transfer conditions relative to 
case a. It is now proposed, with this RM, to simulate the 
system behaviour when conditions of case b are applied. 

In order to apply these new conditions, let us take 
equations (14) and (15). The side AD is supposed to 
exchange with the environment temperature Q(t). @‘, is 
the correcting flux vector (n, = 25), which is written, 
according to equation (25) : 
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Fig. 7. Case a : linear convective transfer on AD. Case b : convective+ radiative transfer. 

Table 2 
The different time constants (in s) : analytical and identified for each input 

The six first time 
constants obtained with 
an analytical method 

The identified time 
constants for the input 
flux cp 

The identified time 
constants for the input 
temperature 0 

Xl 0.579 0.575 
% 6.14* lo-’ 8.6 * 10-l 
13 2.09 * lo-’ 2.8 * IO-’ 
% 1.02 * lo-2 6.2 * 10m3 
75 5.97 * lo-’ 3.4* 10m3 

=6 3.09 * lo-’ 

0.577 
6.25 * IO-* 
2.17 * lo-’ 
6.46 * 10m3 
1.02* lo-3 
5.45 * lo-4 

a, = R(@ -y4) (29) 
R (dim.25 *25) is the corresponding radiative con- 
ductance matrix. An emissivity equal to one is applied to 
each element of the boundary AD. 

3.2.3. Resolution 64 RM equations 

3.2.3.1. The stationary state. At first, the initial station- 
ary state is necessary. When vector QC is introduced in 
equation (15) and, knowing that in the stationary case 
x = 0, we obtain : 

y = Su+S,R(B“ -y”) (30) 
which can be written : 

Ay4 +y+b = 0 (31) 
with 

A = S,R, b = -Su-S,Rt14. 

The Newton-Raphson method is used to solve this non 
linear equation [2 I]. 

3.2.3.2. The transient state. The time discretization of 
equation (14), associated to the correcting flux vector 
(29) leads to : 

(32) xt = x,, -exp(FAt)G,(Ry+“) 

with 

x0 = exp(FAt)[x- +G(u+ -u-) 

+G,R(Q+4 -e-4+yp4)1 (33) 

where At is the time step between the calculation instant 
(+) and (-) the previous one. The term x0 includes all 
the terms that are known at the instant (+). 

Using equations (30) and (32) in the output equation 
(1 S), it ensues : 

y+ = Hx, -H exp(F dt)G,Ry+4 

+Su+ +S,RB+4-S,Ry+4. (34) 

Grouping the terms concerning y+ and Y+~ we obtain : 

Ay+“+y+ +b = 0 (35) 
with 

A = (Hexp(F dt)G, + SJR (36) 

b = -Hx,-Su+ -S R8+4. C (37) 
As in the case of the stationary state, the Newton-Raph- 
son method enables the calculation of y+ at each time 
step. If this last one is small, which is generally the case, 
the formulation can be linearized. 
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3.2.4. Simulations and results 
In order to compare RM and DM in case b, the fol- 

lowing inputs are used : 

??for the initial steady state, 0 = 0 K and ye = 1000 W 
-2. m , 

??from this steady state, only q(t) will vary. 

In Fig. 8 are presented the p(t) variation as well as six 
element temperature variations, chosen among the 25 : 
the numbers 1, 5, 10, 15, 20 and 25. Element 1 is in 
contact with A and element 25 with D. For each element, 
three curves are presented : 

use of an identified reduced model associated to bound- 
ary conditions which are very different from the ones 
used for identification. It has been shown here how 
different kinds of heat transfer couplings could be carried 
out : conduction-conduction, conduction-radiation. Of 
course, it is also possible to introduce a change in the heat 
transfer coefficient [9] which could be very interesting for 
some industrial applications such as heat exchangers for 
example. 

??the above curve shows the results of simulations made 
with DM, without radiation (case a, E = 0) ; 

??the two other curves-which appear to be the same- 
show the results of case b (E = 1) for DM and RM 
when taking into account the radiation through the 
correcting fluxes Oc. 

In the frame of complex thermal systems, where the 
different kinds of heat transfers occur, the technique 
allows us to envisage some substructurations where the 
conduction parts would be calculated with reduced 
models. An application with parallel computing is also 
possible. The main disadvantage of the method is the fact 
that the part of the boundary to be coupled must not be 
too important compared to the whole boundary. 

Simulations have been made with 100 time steps of 0.02 
s. As in the previous example, this choice of time induces 
the use of a RM of order three on each input when taking 
into account the identified time constants. 

Comments : 

With this type of reduced model, we are currently 
working on the inverse heat conduction problem, con- 
sisting in the identification of the time varying inputs, 
from the knowledge of the outputs. This is a typical ill- 
posed problem, and the use of the reduced model acts as 
a regularization and gives some good results [ 161. 

??the comparison DM-RM for case a is not presented 
here : the curves are excellent, case b (more difficult to 
simulate) is more interesting. However, the DM curves 
are presented here essentially to emphasize the influence 
of the additive radiative conditions of case b ; 

??note that RM, identified in the linear context of case a, 
gives excellent results in case b when the correcting flux 
vector is used: the DM and RM curves cannot be 
distinguished from one another ; 

??these results are all the more interesting as the system 
is strongly stimulated : the temperature gradient along 
AD is strong and the corresponding radiative heat 
transfer is relative to a radiative temperature of 0 K. 
Even element 1, for which the temperature level is the 
most important (up to 500 K), has its temperature 
variation very well represented with RM ; 

??when comparing cases a and b, it can be noted that the 
correcting fluxes included in Q’, are able to correct the 
output amplitude as well as their dynamics. 

Furthermore, we also intend to work on the coupling 
of a heat conduction reduced model with a fluid mechanic 
model, as well as on the model reduction for the advec- 
tion-diffusion problem. 

Appendix 1: Time discretization for equation (3) 

Let At be the time step. The current time step is noted 
with the subscript (+), the previous one with the super- 
script (-). The equation to treat is : 
Cap(t) = KT(t)+@(t)+@Jt). 

For the centred scheme, by writing : 

p= T+-T- 
At 

and T=F 

in the equation, it ensues : 

A=;-C;‘K, 

4. Conclusion 
and b, = CT ‘CD: 

where I is the identity matrix of order N. 

The method of correcting fluxes enables the division 
of a heat conduction problem into two parts : 

-the first one relative to the diffusive domain where the 
boundary conditions are kept unchanged ; 

-the second one only relative to the boundary where the 
condition changes. 

Note that b includes the coupling vector @_ unlike 
the implicit scheme, but only at the previous instant of 
computation. 

Appendix 2 : Modal state equation with the static matrix 
and the input derivative vector 

When associated to the technique of model reduction, Let us take a classical system of N differential equations 
this method is quite efficient and promising. It allows the in time under the form : 
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Fig. 8. Flux density q(t) vs. time and six of the 2.5 outputs : case a; DM without radiation (E = 0), case b; comparison DM and RM 
with the correcting fluxes a,. 
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C,F(ct) = KT(t) +‘l’(t) (Al) 

that can be written as the state space representation : 

T(t) = dT(t)+9lLqt) 642) 
d (dim.N * N) is the state matrix such as : d = C; ’ K 
U(t) (dim.p) is the input vector which includes the ther- 
mal solicitations that are applied to the different nodes 
of r(t) through matrix a (dim.N*p) such as: g 
r/(t) = C,‘Y(t). 

Often, an output equation is associated to equation 
(A2) : 

A0 = Wt) (A3) 

which permits to keep, in the vector v(t) (dim.N’), a 
selection (or a combination) of the components of T(t) 
through the output matrix ‘%? (dim.N’ * N). 

Consider now a steady case governed by U, = Cst. The 
corresponding solution T, of equation (A2) is then 

Thanks to this expression, we can introduce the new 
variable T’(t) = -dm’STU(t) that represents the quasi 
solution of equation (A2) if the system could react instan- 
taneously to the vector U(t). 

In equations (A2) and (A3), let us introduce now the 
change of variables : 

T(t) = T’(t)+X(t). 

It ensues the new state space formulation : 

Y(t) = dX(t)+d-‘ml(t) (A4) 

y(t) = wL(t)-ud-‘mI(t). (A9 
X(t) (dim.N) is a new state vector whose derivative is 
connected to the derivative of the input vector. The 
matrix Y = -%?%pP-‘g which appears in the output 
equation (A5) is called the static matrix (in fact, if 
u = Cst, y = YU). 

Note that the formulation (A4) and (AS) is equivalent 
to the original one (Al). 

To obtain a modal formulation from (A4) and (A5), 
we make a new change of variables X = Mx, where M 
is the modal matrix (dim.N* N) which contains the N 
eigenvectors of matrix &. It follows from this : 

2-(t) = ~x(t)+~O(t) (‘46) 
y(t) = Xx(t) + Yu(t) (A7) 

with : B = Mm’&-‘M which is the diagonal matrix that 
contains the eigenvalues of .QZ, 3 = Mm’d-‘93, 
X=WM. 

Remarks : 

??equations (A6) and (A7) are equivalent to (Al) ; 
??equation (A6) is easier to integrate than equation (Al) 

because the components of x(t) are uncoupled ; 
??numerous technics of reduction lean on the principle 

of decreasing the number of eigenvalues contained in 
equation (A6) 
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